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V. On the Application of Harmonic Analysis to the Dynamical Theory of the Tides.—
Part II. On the General Integration of LAPLACE'S Dynamical Equations.

By S. S. HoueH, M.A4., Fellow of St. John's College and Isacac Newton Student in
the University of Cambridge.

Communicated by Professor G. H. Darwin, F.R.S,
Received October 27,—Read December 9, 1897,

I~ the former paper on this subject I have dealt with the formation of LAPLACE’S
dynamical equation for the tides, and the integration of it, subject to the limitation
that the solutions obtained should be symmetrical with respect to the axis of
rotation. In the present paper I propose to extend the method of solution so as to
free it from this restriction.

The difficulties experienced by LAPLACE in his attempts to integrate the equation
in question were so great that he abandoned all efforts to obtain a general solution,
and confined his discussion to a few of the special cases which present the greatest
interest from a practical point of view; even in these simple cases however his
original attempts to express the solutions by means of the coefficients associated
with his name were discarded in favour of series proceeding according to powers of
a certain variable used to define the position of a point on the Earth’s surface.
These power-series have been further employed by Lord KELvIN® to obtain a more
general solution of the problem, but the results obtained, though of considerable
analytical interest, do not lend themselves well to a numerical discussion. Both
Ayt and KEeLviy condemn the employment of the surface-harmonic functions
as inappropriate, but a profound conviction that the efforts of LaAPLACE, though
unsuccessful, were well directed, has led me to take up the problem again from his
point of view ; with what success will be seen hereafter.

I was originally led to attack the problem by a totally different method from that
of LAPLACE based on the work of PomNcarkf and Brvax§, and the principal
analytical results, both in this paper and in the preceding, were at first obtained by

¥ “On the General Integration of Laprace’s Differential Equation of the Tides.” ¢Phil. Mag.,’ 1875,
+ “Encyc. Metropolitana.” Art. “ Tides and Waves,” Section IIT,, § 116.
I “Sur I'équilibre d'une masse fluide animée d’'un mouvement de rotation.” *Acta Math.,’ vol. 7,
p: 355, et seq.
§ “The Waves on a Rotating Liquid Spheroid of Finite Ellipticity.” ¢Phil. Trans.,’ A, 1889.
T 2 24.5.98,
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140 MR. 8. 8. HOUGH ON THE APPLICATION OF HARMONIC

a very lengthy analysis similar to that used by the latter writer. The comparative
simplicity of these results seemed, however, to point to the fact that they might be
more easily obtained by less pretentious means. The deduction of the formule in
the former paper from the differential equation of LAPLACE presented no serious
difficulties, but in attempting to apply a like method to obtain the more general
formulee of the present paper, I found that formidable obstacles had to be overcome.
The method of integration now adopted seems to leave little to be desired for sim-
plicity, considering its generality, but the fact that it has been built up partly by
working forwards from the differential equation, and partly by working backwards
from the results, must account for the apparent artificiality of the procedure.

In all previous attempts at the solution of the dynamical equations for the tides,
the integration has been effected by assuming that the expression for the tide-height
could be expressed by an infinite series of terms of known form associated with
undetermined numerical coeflicients. The differential equations then lead to a
difference-relation between a certain number of these coefficients from which their
numerical values are to be evaluated. The numerical determination of the coefficients
will be facilitated when this difference-relation contains as few terms as possible.
Now it is found in the present paper that, without imposing any restriction on the
period of the disturbing force, if the form we assign to the terms of the series for the
tide-height is that of the tesseral harmonics or LarrLace’s functions, a linear relation
involving three successive coefficients only may be deduced, provided that the law of
depth is such that both the internal and external surfaces of the ocean are spheroids
of revolution about the polar axis. This however appears to be the most general law
of depth which can be employed without obtaining more than three successive
coefficients in-the linear relation in question, and consequently our discussion deals
only with cases where the law of depth is subject to this limitation. ;

In § 1 I have collected the principal properties of the functions used in the
analysis. These properties are for the most part well known, but in consideration of
the want of agreement in the notation employed by different writers, I have thought
it best to briefly prove such of them as are required in preference to giving references
to places where they may be found. Moreover I have thus been enabled to write
the results in the exact form required for subsequent application.

§§ 2-4 deal with the integration of the differential equations and the deduction of
the linear equations (31), (40) connecting the coefficients in the expansion of the
tide-height. These equations, the analogy of which with the equations (23), (234)
of Part I. will be at once apparent, constitute the chief analytical results of the-
paper, and the remainder is occupied with the application of these formule to
the discussion of the free and forced Vlbratlons on hnes s1m1lar to those adopted
in Part I

§§ 5-11 treat of the free oscillations, the discussion being confined to the case
where the depth is uniform. A period-equation is obtained, and an approximate
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ANALYSIS . TO THE DYNAMICAL THEORY OF THE TIDES. 141

method of determining the higher roots is given. The approximations will not
however be suﬁiciently close for the earlier roots, and consequently it is necessary
to evaluate these earlier voots by trial and error. The method of procedure is
indicated by numerical examples, and several of the more important roots are
tabulated for four different depths of the ocean. The most interesting result is the
existence of a second class of free oscillations besides those whose existence may be
at once inferred by analogy from the simpler problem of the oscillations of an ocean
covering a non-rotating globe. The characteristics of the oscillations of this class
are discussed in § 11. ' _

In § 12 a general analytical solution of the problem of the forced Vlbratlons due to
any disturbing force is given, but as the analytical expressions obtained are too
intricate to afford much indication of the nature of the forced tides, the various
types of oscillation which occur on the earth are afterwards treated numerically.

In certain cases, intimately associated with those actually occurring, the analytical
expressions however admit of considerable reductions. These cases are discussed
in § 14, where theorems due to LAPLACE and Professor DARWIN are obtained and
generalized. ,

§§ 15-18 contain numerical examples of the evaluation of the semi-diurnal and
diurnal tidal constituents. The arithmetic is considerably simplified when the
period of the disturbing force is rigorously equal to half a sidereal day or a sidereal
day, and consequently these cases are first dealt with and the results compared
with those of LApLAcE. Additional examples are however also given to illustrate
the effects of the departure of the periods from exact coincidence with half a sidereal
day and a sidereal day respectively, the cases selected for investigation correspond mg
with the leading lunar constituents. '

§ 1. Properties of Tesseral Harmonics.

Let P, {n) denote the zonal harmonic of order n. Then P, is the solution which
remains finite when w = 4 1 of the differential equation

a dl,L
d;{a- 2 }—i—n(n-{— P,=0. .. ... ()
Let

&P,

PLlw) = (1 =) 20 (2)-

Then, on differentiating the equation (1) s times, we obtain

] o 2P, ds+1Pp, dI,, "
(1'-’”)4#”2 2(3+1)f"d3+1 +(n"3(“+3+1) ; =0,

or, . .
(1= 21— WYVP} =26 1) b1 = R
+(n—s)(n+s+ 1) P =0,
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142 MR. 8. 8. HOUGH ON THE APPLICATION OF HARMONIC

which on reduction gives

d

‘{(1___”2) d"}"i"{ﬁ(n'l_l)mijg;ﬁ} P;;:O . -. (3)

A

Thus P; is a solution of the equation (3); the form (2) shows that it does not
become infinite when p = 4 1, while from (3) we see that the two functions
P, cos s¢, P, sin s¢, or what is equivalent, the two functions Pje** are spherical
surface-harmonics of order n. In our subsequent work the latter forms involving the
imaginary exponential will be more convenient than the real trigonometrical forms.
We shall therefore describe the functions Pi (w)e*™ as the tesseral harmonies of
order n and rank s. In some cases it may be convenient to apply the same nomen-
clature to the ““associated function” P; (u), but whenever this is done, it must be
understood that an exponential factor is implied, though not expressed.

The tesseral harmonics of course include as special cases the zonal harmonics
obtained by putting s = 0, and. the sectorial harmonics obtained by putting s = =,
while, in accordance with the definition (2) for values of s greater than n we may
suppose that P;(u) = 0.

The principal properties of the tesseral harmonics which we shall require may be
derived from those of the zonal harmonics. Thus, if we differentiate s times the well-
known relation

o 4+ )P — @+ DHpP,+aP,,=0. . . . . . (4),
we obtain
HH &P, P, | AP,
(n + 1) —2n41)p e (2n 4+ 1)s i + T = =0,
which, on making use of the formula
R
“a I =n+DP, . . 0 ()
gives "
‘ &P, b, : s ’nw :
(n=s41)" " — (2 + D’ P +()l+é)L
On multiplying by the factor (1 — u?)* this may be written
(n—s+ 1P — (20 +1)uP, +(n4s)P, =0. . . (6).
Again by differentiating the equation (2) we find
dap:, AP, ar @D,
(L= ) = —sp (L= ) 0 (L — )
a N dPn 1P,
= — Pt (L= [ {0 =) ) o s = 1)
(1 o &P, ds- l1 S
== S,LLP; — ([ — FL"’)"S [% (’VL + 1) dw"l bandi} (S — 1 ) (7}:_—1‘!
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ANALYSIS TO THE DYNAMICAL THEORY OF THE TIDES. 143

in virtue of the differential equation (1) for P,; and therefore by means of (5)

aps s m—s+1)(n+s) w @
(1 - F’g) ‘(l,u: = S:U'Pﬂ - I+ 1 (1 - /“‘2) d;; {Pn-H - an—l}
n—s+1(n+s .
= P} — ¢ 229 Py, — Py,

2n + 1
which with the aid of (6) may be expressed in the form

ar, _ _n(—s+ 1)y,

d (n+1) (0 +9) 5,
du - In + 1 w1+ P

(1 — ) s P (),

Let us write for brevity

/
D=(1—p) }
’ - (®)
— iy~ Y e T
A:@() 1= SU
Then the equation (3) may be written
AP = —nm+ )P . . . . . . .. . (9),

while, if o denote any constant quantity, we obtain from (6), (7)

s . (m=o)(n—s+ 1), (n+ o+ 1)(n+s) g, .
(D + O-I") Pn - o+ 1 Pn—H + om + 1 a-1 (10)'

The relation between the operators D, A may be written in the forms

(D= o) (D4 op) = (8 — o) = (1 — ) (A + @}
(D + op)(D —op) = (s* — o%) = (1 — p) (A — o)

which will be useful hereafter.

(11),

7

§ 2. Transformation of the Dynamical Equations for the Tides.

The formation of the differential equations for the tidal oscillations of the ocean
has been fully dealt with in Part I. It is there shown (§ 4) that, if U, V denote the
northward and eastward velocity-components in latitude sin~u and longitude ¢,
when the system is executing a simple harmonic vibration in period 2w/\, these
velocity-components will be expressible in terms of a single function by means of
the equations

SV 20 o
T T AV —de ) op T oy (1 — i) (O — dot) O |

. 2 , Lo (12).
V= _ Zopv (L =)0y 2 N |

(O —do¥?) T ay/(1— @) (W —do¥?) 0 |
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144 MR. 8. S. HOUGH ON THE APPLICATION OF HARMONIC

Supposing that U, V, ¢ are each proportional to ¢™* we may take oys/dp = sy,
and therefore, if we put 2ws/A = o and introduce the abridged notation of the
previous section, we may write the above equations in the form—

. s )
‘/(1—#2)U——__‘2;asz—022(D )tp l
.9 1 r)
«/(I—M)V~’—§:‘,‘J;~ww9 mjaﬁ ;> (13).
a? 1
="§@[SQ_UQ;L2V(D"U“)"-]¢ Jl

The equation of continuity is

Y 21—y 2]

where % denotes the depth, and { the height of the surface-waves. On substituting
for U, V from (13) and performmg the differentiations with regard to ¢, ¢ this
becomes :

(=)= [D Lm0 —omp} |+ 5 s 0 —ow | = v,

or

4w Q)C—(D"‘O’M){sz 2(D-—-0‘Mlll}‘—/llp .. (14).

This equation is equivalent to the equation (17) of Part I. A second equation for
the determination of the two functions v, { is obtained from the pressure-condition
at the free surface. On reference to § 2 of Part I., this condition is seen to lead to

=0 —9gl+v . . . . . . . . . (13),

where v’ denotes the surface-value of the potential due to the harmonic inequalities,
and v the surface-value of the disturbing potential.

In order to effect the integration of these equations, we introduce two auxiliary
functions ¥,, ¥,, connected with ¢ by the relation

y=D+op)¥, + ($—ou?)¥Y, . . . . . . (16)

On applying the operator (D — ou) to the two members of this equation, we
obtain in virtue of (11)

(D — op) = (1 — ) (& + o) ¥, + (£ — o%) ¥,
+ (2 = 0%2) (D — op) ¥y — 207 (1 — @) ¥y . . (17)

Now the functions ¥,, ¥, have as yet been subjected only to the single condition
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ANALYSIS TO THE DYNAMICAL THEORY OF THE TIDES. 145

(16). We may therefore impose on them any other arbitrary condition not
inconsistent with the former. Suppose we choose them so as to satisfy the relation

A4V, =20%Y, . . . . . . . . (18)

The two equations (16), (18) serve for the complete definition of the two functions
V), ¥, ; making use of the latter, (17) reduces to

(D —op)p=(— o) {¥, -+ (D—op)¥} . . . . (19).

Thus on replacing ¢ by its value in terms of ¥, ¥, in the right-hand member
of (14), we deduce '

4ewa?

(L=p) = (D+ op) (W¥, + b (D —op) ¥} —h[(D+op) ¥, + (s°— o) V]

a?

It we suppose that / is constant, the terms involving ¥, will disappear, while in
virtue of (11) we shall obtain

deoa?

(1 =) l=h(l—p*) (A —a)¥,

Q
o?
or
do’a?

a?h

(A—o)¥,= A 1) )

We have now for the determination of the functions o, {, W, ¥, the four
simultaneous differential equations (15), (16), (18), (20).

§ 8. Integration in Series of Tesseral Harmonics.

Let us suppose that ¥, {, v, ¥,, ¥, are each expressible as series of tesseral
» W Wy
harmonics of the same rank s, Omitting the exponential factor e+ we assume
that
o=

Y= 3 P (n),

n=s

(=S 0P (),

n=s

n =0

v:Es'nybe(;L), S e (2D

o= % @ (),

n=s

n = w

\If‘:l = X BiPT’ (I")
n=s

b
= -

Then, if p denote the density of the water, and o, the mean density of the whole
VOL. CXCL—A. U
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146 MR. 8. 8. HOUGH ON THE APPLICATION OF HARMONIC
system inclusive of the ocean, by well-known properties of surface-harmonics it
may be shown that
V=30 G
Thus from (15), on replacing the quantities involved by means of their expansions
in terms of associated functions, we obtain
AP (p) = — g2C, {1 ~ ot Do }1’; (w) + ZyiPi(w);
whence, if we equate coefficients of P% in the two members, we deduce
=—=gC+y., . . . . . ... (22)
where we have written for brevity
g,zzg{l -—mi—pﬁa} Coe e (28)
From (16), (18), we have
Y= (DA op)¥, + &V, —du(a+o)w, .o (24)
But by means of (10) we find, on replacing W, by its expausion,

— [(}l —o)(n=—s+1) P (0 4o+ 1)(n+s) P ],

e

(D -+ U'u) Y= o + 1 il o+ 1

while from (9), (6), we obtain

s+ 1 %+a. ]

p(A + o)W, = S} o~-—n(n+1)}lm ’+1+"n4 1

Thus

(D + op) = dp(A + o)] ¥,

g =D +e}(n—s+1) f(n+ D+ 2)+a}(n+s)
= 3@20&,,[ 2n + 1 Piu+ 2 4 1 P —‘

—

-and the right-hand member of (24) is therefore equal to

22T
2D,

g —=10)+et (n—s 4+ 1), {(n+1) (0 +2) + o} (0 +5)
-l" %Eal’[ In + 1 I)'H + 2n 4 1 :P”~1,

Heuce, on comparing the coefficients of P in the two members of (24), we obtain

Ny (n=9) {(n—=1) (1= +0} , (n+s+1) {(n+2)(n+38)+0} , ’
Fn - SQBn + 5 2 — 1 ] n— + % M + O n’+1 (25)'
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Again, on replacing W¥,, ¥, by their expansions in (18), the two members may be
expressed as series of associated functions by means of (9), (6). Thus we find

-3+ 1 7w+ S o
— 3 {n (0 + 1) — o} Py = 2% T R+ L P,

whence, on equating coefficients, we deduce that

w{nm+1) —o}=—2 {Z 0B+ S B L o)

2n+3

Finally from (20), on expressing the two members by their expansions and
equating coeflicients, we obtain

fnn+ 1) 4o} B=—="200C . . . .. . ()

The relations (26), (27), enable us to eliminate the auxiliary constants 8, «:_,,
aj+ from (25), and thus to express T® as a linear function of Ci_,, Ci, C%,,. On
substituting for «}_,, «},, from the formula (26) in (25), we obtain

C @ (n—3s){(n—1)(n—2)+ o} [n-—3s n4s
Fi=¢g— o (2n—1){(n—1)n — o} {an B 21&—{—1’3}

g +s+1){(n+2)(n+3)+ o} {%-—s+1}@g +n—{-s+218s }
@n+3){(n+1)(n+2) —a} 2n 4+ 1 TN 20 45 e

z(n—s)(n—S—1){(7@—1)(7@_2)+O_}B
@2n—1)2n =3){(n —1)n — o} o

+[82 o (r=s8)(n+s){(n=1)(n—=2)+0} (n—s+1)(n+s+D{(n-+2)(n+38)+o} 8
7 Cn—-1)2n+1){(n—1)n—a} - (2n+1)(2n+3){(n+1)(72-{-2)—-0-}:] '

s +s+ 1) +s+2) {(n+2)(n+3)+ o} g
(2n+ 3)@2n + 5) {(n + 1) (n + 2) — o} 042

and this, by means of (27), gives

pry (n—s)(n—s—1) . .
do®a® — (2n — 1)(2n — 3) {(n — 1)n — o} Cie — AC

(n+s+1)(n+ s+ 2)
2n 4+ 3y2n + 5){(n + 1) (n + 2) — a}

+ C?z+2 . . (28)’

where
s _ (=35 (n+s){(n—=1)0m=2)+ a}
*{n(n+1)+oe} Cun—=1)Cn+1){n—-1)n—0c}{n(n+1)+c}

_ n+s+1)@—5+1){(n+2)®n+ 3)+ s}
@2n4+ D)2+ 3){(n+1)(n+2)—a}{n(n+1)+ o}
U2

8
A, =
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148 MR. 8. S. HOUGH ON THE APPLICATION OF HARMONIC

This expression for A}, may be somewhat simplified if we separate it into its com-
ponent partial fractions; we thus find

AS — 8 _ (n —8)(n + s) [ (n—1)* . 2n — 1 ]
T e n(n+ 1)+ o} =12+ 1) {n(n—1)—c} 2¥nm+1)+ o-}J
_(n——s-{—l)(n+s+1)[ (n + 2)* n 2n + 3 }
@Cn+1)2n+3) [(n+1){(n+1)n+2)—c} = (n+1)*{n(n+1)+c}
R [f‘i n Ne e 52 _ (n + 1) — ¢
"" {n(n+ 1) + o} o n?(2n +1) (o + 1)*(@2n + 1)]
(n—=1(n—s)(n + s) (n+22m—s+1)(n+s+1)

T - Cn+ L {n(n~—1)—0a} - (n+1P2Cn+1)Cn+3){(n+1)(n+2)—0c} ;
whence finally, remembering that o = 2ws/\,

Ao (n+ 1) — 20s/A (n—1%(m —s)(n+s)
4e* 2n 4+ 1) w? (2n — 1) (20 + 1) {(n — 1) n — 2ws/\}

[ ppe—
A»;z -

_ (n 428 (n—s4+1)(n+s+1)
(n+ 1220+ 1)(2n + 3){(n+1) (n+2) —20s/A}

(29).

The relation (28) will hold for all values of n equal to or greater than s, provided
we suppose that Ci_, = 0 and Ci_, = 0. If we put for brevity

s — (n —s+1)(n—s+2)
L = @n+1)@Cn+ 3){(n+ 1) + 2) — 2ws/\}
§ — (n+s+ 1D +s+2)
Y, = (2n + 3) 20 + 5) {(n + 1) (n + 2) — 20s/\}

(30),

it may be written
]l/]:-‘fz 3 S 8 S S S
4—6;“2‘6& = ‘/B;L—2On—2 - Anon + ynon-{-w
Replacing T¥ by its value in terms of C}, y; [equation (22)], we obtain

. ) ey
m":—ZO:jL—Z - L?LC;I + .%VOMZ = E L (31)3

4o’

where x;_,, y; are defined by (30) and

P SN, |
Li=— 50 oo (32),
A; being defined hy the equation (29).

On putting s = 0 it may readily be verified that the equation (31) reduces to the
equation (23) of Part I. The manner in which such an equation may be utilized for
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the determination of the free and forced vibrations has been fully discussed in that
paper. A strictly analogous procedure might be adopted in the present case, but it is
found convenient to modify the previous treatment in some respects. We shall
therefore only indicate briefly the course of procedure when our analysis corresponds
with that given in Part I., giving greater detail as regards those points where a
different method has been found desirable.

§ 4. Extension to the Case of Variable Depth.

The formule developed in the preceding sections apply only to the case where the
depth is uniform. We may however obtain a relation of the same nature as the
equation (31) when the depth is a function of the latitude given by the formula

h=k+1(1—p%) . . . . . . . . . (33),

that is, when both the internal and external surfaces of the ocean are spheroids of
revolution. -
The above expression for s may be written in the form

, A2 (s — o
/L:—‘K+l<4wg—#2>=1€+“‘“—;§“ﬁ—) Coe e (39),
where
A2
K=k+l(1-—-4;§). C .. (35)

Substituting the expression (34) for 4 in the equation (14) we obtain

4

S (=) =D+ 0'#)[

K

a2

(D — op) l#] —

§* — o't

+ (—)%[(D 4+ op) (D — op) — (s* — o*u®)] ¥,

which, with the aid of (11), becomes

dw?a® l

01— ) [C — o (8 —0) \l'] = (D + op) [; ——(D — ou) \lf] — K.

o’

The right-hand member is of the same form as that of the equation (14), except
that / is replaced by . 'We may therefore introduce two auxiliary functions w,,

¥y, defined by (16), (18), and proceed as in § 2, and we shall obtain in place of (20)
the equation

(A — o) ¥, = 22 [g - 4:%9 (A — o) t,b:‘ e | (36).

ok


http://rsta.royalsocietypublishing.org/

|
P

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

Py
A \

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

150 MR. S. 8. HOUGH ON THE APPLICATION OF HARMONIC

But, if we introduce the expansions (21) for v, {, we find

7

{— 46.:20,2 (A—o)y=2%3 [o:; + %iag {n(n+ 1)+ o} I‘J Py . (37),

whence the final equation which replaces (31) will be obtained by replacing C; by
4 7T
+ s+ el L (38)
in the right-hand member of (28), and % by « in the left-hand member.

Thus we obtain

£l
4:(1.)"66 -

‘ l
x5 o [Cfx-z + i ailn—2)(n = 1) + o} Fz—]

Y [o + i S+ 1)+ o)

[ Court s (0 + D+ 3) 4l Ths] - (0)

“‘(L
and therefore, on sepmatmg out the parts of T% due to C;, ¥} respectively, we find

fn—"O -2 T ﬁfiofz + Vva,waz - G; . . . . ¢ ° ° (40):

where
cosfi-dforne®]] ]
n=nfi—falataera+2] ..
L= 4’;‘3;2+A;{ — e famrn+ 2
and
G = — ~a2[n 2)(42—-1)—!—-29-E A
+ [ i {0+ 0+ e

- 4};%;; {(n + 2) (n + 3) -+ “”X"“}?/f{)’fwz T )

For the special case s= 0 the equation (40) reduces to the equation (234) of
Part 1.

$ 5. The Period-equation for the Free Oscillations in an Ocean of Uniform Depth.

To determine the periods of free oscillation we may proceed exactly as in §6 of
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Part L., making use of the equation (31) instead of the simpler equation (28) of
the previous paper. On putting vy zero, the equation (3 1) gives

w'{i-Z CfL—Z - L?& + yn C/L-l g = L . . L (48>’

an equation which must hold for all values of n equal to or greater than s, it being
understood that Cj_, = 0, and C;_; = 0. The series of equations typified by (43)
may be divided into two groups, in the former of which the suffixes involved are
such that n — s is even and in the latter odd. The types of motion resulting from
these two groups may be treated independently, the former being characterised by
symmetry with respect to the equator and the latter by asymmetry. The treatment
of the two groups of equations will be exactly similar, and we shall therefore in the
main confine our discussion to the former group.
If we introduce the notation

He = Zn M- “als
" Ly - Li, —...— L¢
P i 08 (44)’
]':{‘S —_— V"Q’n-—‘z,/l/n—‘l _‘fi)z,yi .
" Ly — Ly — ... ad inf .
it may be shown as in Part 1. that provided I/ ¢, = 0,
' =0
e s . ,]/ Cx
= — H¢ et = KL 0 0 0 0 L (45
G =00 G (45),

and therefore the equdtiou (43) may be written
’ (/ [H11—2 Lfr + K:HZ] = Oa

whence the period-equation for the free oscillations of symmetrical type is obtainable
in the form
L—H_,-K.,.=0 . . . . . . . . (46),
when n — s is an even integer.
The same equation will apply to the asymmetrical types if we suppose that n—s is
an odd integer, and that the continued fraction H; terminates with the partial

. HERY
quotient - "~.“E~‘-j/—*‘*-"
gy

In particular, putting » — s = 0, we can express the period-equation for the
symmetrical types in the form

T — 7313 ,M‘i = 0 ( 46(,6)
S Ly, — Ly —...ad g oo ’

while, putting 1 — s = 1, that for the asymmetrical types may be written

Ly — i1 Y51 Tialses =0 (46b)
541 Ly — Ly —...adwf D ‘

On the é»na-logy ot the problem dealt with in Part I., we may anticipate that, when
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A has a value in the neighbourhood of a root of the equation Lf = 0, the continued
fractions H;_,, Ki,. will rapidly converge to small values. Further, with large
values of n, the numerical values of H;_,, K;,, tend to become equal with opposite
signs. Hence there will be roots of the equation (46) which approximate to roots of

the equation
Li=0 . . . . . . . . . .. 4N

Let us therefore examine the nature of the roots of this latter equation; this
may best be done by considering the graph of the function Ai. Putting y = A3,
x = Mw, we have to consider the form of the curve

y=1a2" (n+ 1) — 2sfz (n— 10— s) (0 + s)
Yy=x n?(n + 1)2 2 (2n —1) (2n + 1) {n(n — 1) — 2s/z}

o (n+2P2m—s+1)y(n+s+1) )
(n+1)20Cr+1)2n+ 3 {(n+ 1)+ 2) — 2s/x}

It is evident that this curve will have two rectilinear asymptotes parallel to the

axis of y, whose equations are

U R

x—n(n—-l)’ x——(n-l—].)(n—i»f%)’
and that on passing these eritical values, with increasing «, the sign of y will change
from positive to negative. The curve will pass through the origin, while when « is
very large it will approximate to the parabola
o (n 1) = Zsj

_ 1
y——4‘$C 7l2(7'b+1)2

Hence it must consist of three branches as in the annexed diagram, where the
dotted lines represent the rectilinear and parabolic asymptotes.
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The roots of the equation L{ = 0, regarded as an equation for the determination
of Mw, will be the abscisse of the points of intersection of this curve with the line

y = hg,/4oa?.

Since % is essentially positive, the roots will all be real, and they will lie in the

intervals between
2s 2s

> 0 n+1)n+2)° nm-—1)"

-_ 0

+ oo

For large values of hg,/40*a* the two extreme roots will approxnna,te to the roots

of the equation
hg, M A n (0 4+ 1) — 2ws/A
4o’ T 4o wr(n+ 1) 7

while the remaining two roots will approximate to

- 2s : 2s
rn+1)(n+2)" nn-—1)"

The two former roots are those which have their analogue in the special case
treated of in Part L., for which s = 0, in which case they have equal magnitudes but
opposite signs. These roots, we may expect, will approximate to roots of the period-
equation, at least when = is large.

In order to see the significance of the remaining roots, it is convenient to transform
the period-equation into a different form, which moreover is far better adapted for
the more accurate numerical determination of the earlier roots.

§ 6. Modified Form of the Period-Equation.

Referring back to the equations (29), (80), (32), which define «, ¢, L:, we see
that (31) may be written in the form :

(n—s) (n—s—1) . (n—1)* (n+s)
(2n—1) {n(n—1) —2ws/)»}‘: (2n—3) Ciet 20y n* (2n+1) C"‘:l
_ M a(m+1) —-2a>s/} g | I
|:4w2 (12 4m9cﬂJ !
+ (n+s+1) [(n—l—2)2 (n—s+1) e+ (n+s+2) fl+o:] _ heys (48).

(2n+3) {(n+1) (n+2)—2ws/A} | (n+12(2n+1) (2n+5)

Hence, if we introduce a new set of auxiliary constants, D;, Ds,,, &c., such that
for values of n equal to or greater than s

( 1P (n — : 1 2w .
T e S 0 = (e = 2D )

VOL., CXCI.—A. X
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154 MR. S. S. HOUGH ON THE APPLICATION OF HARMONIC
the equation (48) reduces to

(n+1)?(n — S)Ds

l+n (n+ s+ l)D
2n —1

2n + 3

n+1

4ea®

[4 5 {n (n4+1)— fg)j} —n®(n 4 1)° j‘ZZﬂ] C 4+ n*(n+ 1)° ifyg—l,, (50).

Thus, if we write for brevity

hgu 1

4o’a?

Mg'—%j{ (n‘i‘l)_g%}“"g(%“}'l)z
N 2“’* l oL
w = +1)— - :
n.(n ) J

and put y; = 0, the equation (43) is replaced by the two following :-

(n 4__:]")2_(_2%;8). DS M; ny + M Ds+1 =0 \‘
2n — 1 2n + 3 L (52)
A+ 120 =9 g5 D 4
D00, — D+ 20 D g, = 0|

For the determination of the symmetrical types we therefore have the series of
equations

Y_M:;Og_l_‘S(ZS_,i.]_)DeH_O

s+ 221 X . s+ 1)2(2s + 2)
( ) Js — WNsp1 Ve + ( "';l““?«'“_' Os+2 =0,

25+ 1 2s + b
(s+3)%2 . (s + 2 (25 + 3) 1.,
o Din = Mo Gk PRSP DL =0

On eliminating the quantities C;, Di,, (L, &e., by means of a continued
fraction we find the period-equation in the form

iy o '
s‘" =0 . . . . . (53),
:M N§+1 — M3y, — N&y — ... ad inf. 0 , ( )

where we have written for brevity ¢, in place of

2 (n+ 22 (n—s+1)(n +s+1) (54)
@2n+ 1) (2n + 3) s e e e .

In like manner the period-equation for the asymmetrical types may be written

N# — a Qs ipo =0 (55)
) Mgﬂ - N§+:; - Ml — ... ad fmf
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We may also write these equations in a variety of alternative forms in which
prominence is given to any one we please of the quantities M;, N;. These forms
are obtained by giving n different integral values in the equations

sy Qs Uy a; Gy iy i :
M, — {—-— - - . |=0. (56),

J ] \] y —
L\fz—l - Mfz-z - Nos—.. }‘fzﬂ - N{fzw Nfz—k‘s e

n—3
s ¢ s s
Ns —_ a’n—l av‘:——‘l a;&z—.‘% ] _— [ [Lf; a’n+1 au+2 1 — 0 (57)
7w S ¢ T - M .
1\/151—-1 - N:z—«‘l - Mfl-—S et M:Hl - I\fz+2 - MfLH} T e

In each case the former continued fraction terminates with a partial quotient
involving af in the numerator and either M: or N in the denominator, while the
latter proceeds to infinity.

For the symmetrical types, if we use the form (56) we must suppose 7 — s an
even integer, whereas if we employ ( 57) n — s must be supposed odd. The reverse
will of course be the case for the asymmetrical types.

The continued fractions of the present section will not converge so rapidly as those
of the preceding, but in spite of this drawback they present considerable advan-
tages. In the first place the numerators of the partial quotients, which are obtained
by giving n different integral values in the expression (54), are independent of A.
These numerators, which further are in a convenient form for logarithmic computation,
may therefore be tabulated once for all, whereas the numerators of the partial
quotients in the continued fractions of the last section require to be re-determined at
each successive trial in attempting to solve the period-equation by trial and error.
Moreover, the evaluation of the denominators M:, N?, by means of the formule (51)
may be very quickly effected, even though a fairly large number of these denomi-
nators is required, whereas the evaluation of the quantities L; by means of (29) and
(32) is extremely laborious. ,

Another disadvantage resulting from the use of the preceding form is that when
M is near the value 2s/n (n + 1) the functions a;_,, y:_, both become large, while
L, Li., have both a zero and an infinity in the immediate proximity of this
value. Hence, in order to evaluate L:_;, L:,, for a value of A in this region it is
necessary to observe a very high degree of accuracy in the numerical work. The
singularities which occur in the left-hand member of (46) when \ passes through one
of these critical values no longer appear if we write the period-equation in the form
(57) with the value of n appropriately chosen.

§ 7. Eaxpressions for the Velocity-Components.

The auxiliary constants D:, D:,,, &c., introduced in the last section, may be made
use of to express the velocity-components by means of series of surface-harmonics.
X2
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Thus from the first of equations (13) we have, on replacing ¢ by its value in
terms of ¥, W,

LSO‘

V(=) U= = [0 4 (D — op) ¥y}

On introducing the expansions for ¥, ¥, on the right we find

\/(l'—lj,) _ﬂ___—_%’f_‘«[ o Ps + B,L { (77+G')(7L 8+1)Psy+l+ @Mﬁ fL—l }ji,

200 2n+1 In41
o s [ g (n+a-1)(n—~s) . (n—o+2)(n+s+1) o
2 azP” [ " 2n — 1 Bt 20 + 3 Bivr]

which, with the help of (26), (27), reduces to

Zw@sa

(n—s)(n+ao-—1) n+s+1)(n—0a) C

V(@—p)U= EPS [ Cn—1{nn+1)—0a} Cler @n+3){n(n+1)—0c} ““j}’

or from (49),

TAL . n4s4+ 1 s | s
V=@ U=S0s o+ S c - e es)
_ This may also be written in the form
V=@ U=""2 00 D3P . L (59)

Again, from (13)
VA=)V = = T/ (=) U+ 5y

‘)a

=+ 0 (uC — D) P SIOP L (60),

whence, by means of (6), we may express /(1L — p*) V by a series of surface-
harmonics.

The corresponding formulee when the depth is variable may be obtained by
replacing & by « and C;, by

! 2ws7 .
Ci+ g {n (o D+ T}

so that we find

.Jﬂ)b

V(=) U= """ 2(#[01 o {1+ o r;} D; P

|
¢ (61)
V(1—=p)V = Jl

9 / ! 2ws
“’/j‘”z(u[OH s H{n(n+1)+ S } 1 DZ) i+ oy 30P

where the quantities D; are now defined by
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s s__(n+1)2(7?/-8)r s _ { %}
N’ILD'IL - 2/”/ . 1 L =1 + 4: 2 2 ( 1) +- =1

+ Ul@;{;—j U [Cm m&{(n 1) (0 -+ 2) + ‘wg}rm} (62).
The formulee (61) cease to be of use in a special case which will present itself here-
after for which «x = 0. It will be seen in a later section that the expressions on the
right become indeterminate in this case, so-that the determination of the velocity-
components must be effected by means of the formule (12) or (13). These latter
formulee seem at first sight to indicate that the velocity-components become infinite
in latitude sin~!(s/o), but the forms (61) indicate that such cannot be the case, at
least when « is different from zero.

8. Approximate Determination of the Higher Roots of the Period-Equation.
pp g ] q

If we take the period-equation in the form (56), and as a first approximation omit
the continued fractions from the left-hand member, it reduces to the quadratic
M;sl = O’

or
2ws

A? It
e {/L (n+1) — ———} — (1) s =0
For large values of n the roots of this equation will give a sufficiently accurate

approximation to the roots of the period-equation, since it may be seen that the
continued fractions tend to limits comparable with }#? and therefore small in com-

parison with n® (n 4 1)? when n is very large and M w has as its value either of

4 2 2 ?
the roots of this equation. We may even obtain a fair approximation by omitting
the term containing s, in which case the formula for X corresponds with that obtained
when the rotation is omitted.

A better approximation will however be obtained by representing the continued
fractions by their first convergents instead of entirely neglecting them. The
approximate form of the period-equation is then

‘ Nfz 1 N?H-l
or
M fn(nt+1)— ‘Zws_/ﬁ (n— 1) (n — s)(n + s)
do? »*(n+ 1) w? (2n — 1) (20 4+ 1) {(n — Dn — 2ws/A}
m+2Pm—s+1n+s+1) It

T+ 12Cu+ )20+ ) {(n+1) (0 + 2) — 20s/A}  4e’a? = 0.

We thus get back to the equation Li = 0. The roots of this equation may be

approximated to numerically by HoRNER'S process, the significant roots being those
which lie in the intervals between — oo and 0, and between 2s/n (n — 1) and + oo.
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For the particular case s = 0, the biquadratic to which the equation L) = 0 is
equivalent reduces to a quadratic, the two roots which remain finite being of equal
magnitude and opposite sign. This special case has been examined in Part L., and it
will be seen on reference to the tables there given (§§7-8), that the roots of the
equation L, = 0 give a very good approximation to the roots of the period-equation
except in the case of the earlier roots when 7g/4w®a?® is small. In the present paper
I have examined in some detail the special cases corresponding to the values 1 and 2
for s, and the approximation is found to be equally rapid, as will be seen from the
tables given hereafter. Consequently, in these cases at least, all except the two or
three smallest roots will be obtained with adequate accuracy by finding the roots
which lie in the stated intervals of the equations Li = 0 with different integral
values of n.

The roots so found will not however form the complete series of roots of the
period-equation. We may in fact anticipate that the remaining roots of the equation
L; = 0 will also approximate to roots of the period-equation. To obtain a better
approximation of the roots of this class, it will however be preferable to make use
of the period-equation in the form (57). As a first approximation we omit the
continued fractions and obtain

5= or n(n -+ )mx_- .
This method of approximation will be valid if when Mo = 2s/n(n + 1) the two
continued fractions involved in (57) are small in comparison with n (n 4 1). But it
may readily be verified that with large values of n these continued fractions become
comparable with «%?/hg, and therefore the desired condition will certainly be
satisfied when n is sufficiently large.
A better approximation may be obtained by representing the continued fractions
by their first convergents. We thus obtain as the approximate form of the period-
2
equation for the determination of the root which lies near e
w(n -+ 1)
N/sb — ..ﬁ‘,]m — (,éf'/ =0,
' M?L-—l 1\/J:‘:Hl
or
(n— 12 + 12 (n— s)(n + )
» 2ws (@n —1)(2n 4+ 1)
(e N Py W ey 7
4e” { . } de®a?

4+ 22 (m~s+ L)(n-+s+ 1)
2n + 1) (2n 4 3)

! 208 (4 12+ 22 hguey
{(n + 1+ 2)— T} - dwn?

+

A2

2

()
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Using the first approximation in the terms on the right, we deduce
(m—=12n+1)2(n—s)(n+s) n*(n+ 22 —s+ 1)(n + s+ 1)
208 (2n—1)(2n+1) _ 2n 4+ 1) (2n + 3) — (63).

(1) =2 = n
: hgn 1 2S~ g
2 1) 1)2 92 "Yn+1
wn=1) dew?a? + n(n + 1)> (v 13 (n + ) 4o’a? + n?(n + 1)

This formula is found to lead to the roots of the period-equation with a surprising
degree of accuracy.

Our analysis is only applicable when 4 is small in comparison with ¢, but subject to
this limitation the approximations of the present section will improve as hg/4w’a?
increases, that is, as the depth of the water increases or the angular velocity of rotation
diminishes. They will give good results even with small values of » when o is
sufﬁciently small, and they may be used to determine the limiting values assumed
by the roots when the angular velocity of rotation is indefinitely reduced.

We see then that the roots of the period-equation are of two classes, which may
be distinguished by their limiting forms when the rotation is annulled. The roots of
the former class are such that the values of A remain finite when w = 0, their limiting
values being given by the formula ’

_ a(n+ 1) hga
A= /\/ @?

There will be an equal number of positive and negative roots of this class, but
though these approach the same limiting values their numerical values will not be
equal as in the case where s = 0, and the positive and negatlve roots must therefore
be determined independently.

The roots of the second class are all positive and are such that the values of Mo
tend to finite limits when o is reduced to zero, the limiting values being given by
the formula

whereas N will tend to the limit zero.

The analogue of the types of motion which correspond with the former roots will
still be oscillatory when the rotation is annulled, but the types of motion corre-
sponding with the roots of the second class will cease to exist as oscillations when
the angular velocity of rotation is reduced to zero. These types of motion will
have their equivalent in steady motions, but an infinitesimal amount of rotation
would immediately convert such steady motions into oscillatory motions of very
long period. |

For the particular case s = 0 the roots of the second class are all zero even
when the angular velocity of rotation is finite. Hence steady motions can exist
on a rotating globe, but these are necessarily of zonal type. We have in fact


http://rsta.royalsocietypublishing.org/

fa \

a
-

I ¥
L A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

160 MR. 8. S. HOUGH ON THE APPLICATION OF HARMONIC

already seen in Part I.* that the only forms of steady motion which can exist are of
this character, and have explained the fact by stating that the steady motions not
of zonal type which can exist on a globe without rotation must have their analogue
in the more general case in oscillatory motions whose period bears a finite ratio to
the rotation-period, no matter how great the latter may be. Our present work
confirms this statement and throws further light on the nature of these oscillatory
motions,

§$ 9. BEvaluation of the Earlier Roots.

The errors resulting from the use of the approximate formule of the last section
may be considerable in the case of the earlier roots for which » has small values.
To obtain these earlier roots we must therefore proceed by trial and error, the
preceding method being made use of to obtain values with which to commence
the trials.

As a concrete example we will discuss in detail the computation of the positive
root of the first class corresponding to the case n = 4, s = 1, when the depth is
given by hg/4e’a® = 5. Taking p/o, = 0°18098, and introducing the numerical
values of n, s, and A, the equation L} = 0 becomes

(Mw)t — 03333 (Mo)® — 55481 (Mw)® + 10906 (Aw) ~ 00418 == 0.
By Hor~NER’s process the greatest positive root of this equation is found to be
243265,

Now experience shows that the numerical value thus suggested is in general too
small.t  We therefore select for a first trial a value rather larger than that

indicated, say, for example,
Mo = 2:4400,

From the formula (54) we find

log a; = 02553, log @) = 1'1652, log o} = 1'7289,
log a; = 21450, log o} = 2:4769, log a; = 27537,
log a7 = 29915, log a3 = 32001, log a5 = 33859,

while the values of the expression
n?(n 4+ 1)° g

4e®a?

for the values 2, 4, 6, 8, 10 of n are

1-6046, 18794, 84517, 250'92, 5894,

¥ §§ 14, 15.-
+ Compare the 2nd and 3rd columns of Tables I. and IL, Part L,
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ANALYSIS TO THE DYNAMICAL THEORY OF THE TIDES. 161
Thus we find from the formule (51), with Mw = 2:4400,
M; = 6104, M;=9753, M;= — 2325, M;= — 14497, Mj, = — 4269,
N! = 1180, N}=11180, N! = 29180, N} = 55180, N! = 89-18.

It will be convenient for us now to introduce the following abridged notation :—

e, = = @ —ais’il— . )

Mz — N&, — Mi, — ... adnf
fs — [ @ o '

" Ne — M, — N&,—...adinf

a, as as_o Foeoe e (64)

E; = l\fs NZ—I 1\;\:_
n T [ n—2 T v

F = G G G

Ngt - M;—l - N:z——2 B J

the last two continued fractions terminating with the partial quotient which involves
@ in the numerator, and either M{ or N; in the denominator.
From these definitions of the quantities e, f, E, F, we have :

s a5 s = 7
€ = M s 0 f;t - N s
w—Jas 2 " Cnt1
y ) (65) ;
:Es - F;‘l e R —
n
M:z - Ffz—l

while the period-equation may be written in the forms :

M — Fiy — fi, = 0}

66).
Nf@ - fz—l - efz-i-] = 0 ( )

Suppose that we neglect fi1; making use of the numerical values obtained above
for the quantities M, N, a, by successive applications of the formule (65) we obtain

log e, = 107556, log fi' = 12229, loge; == 107829,
log fi' = 09666, loge; = 709649, log fi'= 0-5606.

In like manner, if we neglect e}, we find

log fo' = 1'2498, logey = n0'7801, log f;' = 09668,
log e} = 109649, log f;' = 05606.

Now the two values of f;' obtained by these methods are respectively the 6th and
VOL. CXCL—A. Y
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162 MR. S. 8. HOUGH ON THE APPLICATION OF HARMONIC

5th convergents of the continued fraction f. Since we find that to the degree of
accuracy retained these are equal, it follows that all subsequent convergents are
sensibly equal to either of them. Hence the infinite continued fraction f;' may be
replaced by its fifth convergent without sensible error.
Similarly we find

log F! = 0°1834, log B} = 0'5045, log F}= 08266,
and therefore

M;—F; — fi' =9753 — 6707 — 3'636 = — 0°590.

As a second trial we take
Mo = 2:4600.

Proceeding as before, we deduce
M; — F} — fi' = 10234 — 6619 — 3607 = 0°008.

We conclude that there is a root of the period-equation lying between 2'4400 and
2:4600 ; by interpolation its value is found to be

2:4597.

The same method may be used for the determination ot the roots of the second
clags, the initial trial values being suggested by the formula (63). As a numerical
example, if we put n = 5, s = 1, hg/4w’es’* = 3% in (63), we find

2w/ = 40974, or M\ o = 004881.
For a first trial we take 20/N = 41, and deduce
Ni—E} —¢e;= — 11 + 8678 4 2602 = 0°280.
As a second trial we take 2w/ = 41°280, and obtain
N! — El — ¢} = — 11-280 4 8657 +2:593 = — 0030,
and therefore, by interpolation,
Ni—Ei—e =0,

when

2w/\ = 41'253, or Mw = 0°04848.

I have selected for special investigation the asymmetrical types when s = 1, and
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the symmetrical types when s = 2, these types presenting special interest in relation
to the diurnal and semi-diurnal forced tides. The annexed tables give the-values of
the computed roots, together with the corresponding periods of free oscillation for
the four depths of 7260, 14,520, 29,040, 58,080 feet treated of in Part I., corre-
sponding to the values i, 3, 15, and ¥ for hg/4w*a®

L-—Dgprra 7260 feet (hg/dw’a® = 4, p/o, = 0°18093).

THE ROYAL A
SOCIETY

OF

PHILOSOPHICAL
TRANSACTIONS

a
fa \
A \
A

/,
/

S

THE ROYAL
SOCIETY

s=1. s=2.
— A o _ A —
Approximate| Corrected . Approximate| Corrected .
root. root. Period.* root. root. Period.
. hrs. mins. hrs. mins.
i 1-8331 16337 14 41 14745 1:3347 17 59
% — 1:0906 — 09834 24 24 — 06582 — 06221 38 34
= 2:0042 2:0685 11 36 | - 2:0024 1-9866 12 5
— 1:8472 — 1:8234 13 10 — 17006 — 16595 14 28
= 06932 06401 Y | dnys e
g 0:05702 0:06251 16 0 t 01532 0'1671 6 0
) 003853 003784 26 10 i 0:08091 0:08178 12 5
IT.—Dzpra 14,520 feet (hg/4e®a® = 4, p/o, = 0°18093).
s=1. s =2,
— = N ¢ A N
Approximate, Corrected . Approximate| Corrected .
root. root., Period. P root. root. Period.
- hrs. mins. hrs. mins.
= 19588 1-8677 12 51 16804 16133 14 52
@ — 1:3021 — 12450 19 16 — 09128 — 0'8922 26 54
5 24327 2:4597 9 45 24363 24349 9 51
— 2-2949 — 2:2907 10 29 | — 21706 — 2:1547 11 8
E’ 07502 07983 dais hxs. days hrs.
é 008423 008673 | 11 13 02054 02129 417
o 0°04881 0:04848 20 15 0-10067 0-10081 9 22

PHILOSOPHICAL
TRANSACTIONS
OF

* Throughout these tables the periods are expressed in sidereal time.

Y 2
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164 MR. S. 8. HOUGH ON THE APPLICATION OF HARMONIC

IIL.—Dgepra 29,040 feet (hg/4w’e® = 1, p/o, = 0°18093).

s = 1. Cs = 2.
— —" —|r " n)
Approximate| Corrected . Approximate| Corrected .
root. root. Period. root. root. Period.
hrs. mins. hrs. mins.
i n=29 22027 2-1641 11 5 2:0241 1:9968 12 1
2 - — 16439 — 16170 14 50 — 1-2960 — 12855 18 40
K — 3-1183 31274 7 40 3:1295 3:1293 7 40
© - — 2:9958 — 2:9961 8 1 — 2:8911 — 28856 8 19
" days hrs. days hrs.
- n=1 08213 0'8149 1 5 . . .
2 n=3 0-1116 0-1124 8 21 02523 02554 3 22
) n=2=: 0:05636 0:05625 17 19 011472 0-11472 8 17
IV.—Dzpra 58,080 feet (hg/d0’a® = §, p/o, = 0'18093).
s=1. s = 2.
~ % il - —
. |
Approximate| Corrected . Approximate | Corrected .
root. root. Period. root. root. Period.
hrs. mins, hrs. mins.
- =9 26431 26288 - 9 8 2:5636 2:5535 9 24
n "= = — 2:1726 — 21611 11 6 — 1:8623 — 1-8575 12 55
< = 4 f 41626 41659 5 46 41820 4-1818 5 44
O = 1| — 40501 — 40506 5 56 — 39610 — 39592 -6 4
r—i days hrs. days hrs.
- n=1 0-8886 0-8873 1 3 . . .o
@ n=3 0:13354 013375 7 11 0-2865 02876 3 11
) n=2~5 0-06108 - 006105 16 9 012332 012332 8 3

The approximate roots here given have been evaluated by the method of §7,
except in the case of the roots of the second class for n =1, s = 1, where, instead
of replacing the continued fraction involved in the period-equation by its first con-
vergent, I have made use of the second convergent, so that the approximate form of
the period-equation from which this root is determined is

1 1
a a
1 1 2
Nl—Mé—-Né_O,
or '
al as
ML — 2+ -2 =0
2 N% Né 3

or, what is equivalent, L; = 0.
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By a comparison of the approximate values given in these tables with the true
values we see that for extreme cases here tabulated, the error involved in the
approximation does not amount to more than about 8 per cent., even with a depth as
small as 7260 feet. We have here a justification of the statements made in the
last section as to the approximation to the higher roots. ’

§ 10. Oscillations of the Furst Class. Determanation of the Type.

We shall describe as oscillations of the first class those whose periods remain finite
when the rotation-period is indefinitely prolonged, that is, those for which the roots
of the period-equation are of the first class. The types of motion whose periods
become infinitely long with the rotation-period will be called oscillations of the
second class.

The determination of the type involves the determination of the constants C,
Dii1s Ciye, &c. (supposing for convenience that we are dealing with symmetrical
types). For this purpose we may either make use of the formule of § 6, or we may
make use of the formulee of § 5 for the determination of the C’s, after which the D’s
must be computed from equation (49). The latter method will be closely analogous
to that used in §9 of Part I., but the former is the more convenient when the
numerical determination of the constants is required.

If we make use of the notation (64), the following relations may be deduced from
the equations (52) :— '

o, o + 1 . C, on + 1 )
D, (n+s)(n— 1 Diy  (m—s+ 1) (n + 20 E. |
D, %41 . Dy 2n + 1 \ (67).
Go - mryo- T s hwrae

But we have seen in the last section how the quantities e, f; E, F may be deter-
mined numerically. Hence the above formule allow us to compute the ratios of the
constants C, D. One of these constants must be regarded as arbitrary, and the
ratios of the others to it can then be computed. 'When the type under examination
is that which corresponds to a root of the period-equation approximating to a root of
M;, = 0, we select as the arbitrary constant of integration the quantity C:, as the
continued fractions e, f; E, F required to determine the ratios of the remaining
constants to this one will then be free from singularities. ‘

When these ratios have been determined we may substitute their values in the
formule

. Gy o Gy o, s 1 O by Chit ps
§=C;ez(ht+s¢) [:' ce + 'E,i Pn—4 + s Pn—-2,+ Pn + L Pn-{—‘z + 0:—4— Pn+ +. .. }

_
("-n
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\/(1_#)(}._’1’?(“ z()\t+8¢)1:'u{ .+ Co P, 4+ P ‘CCL S s+ }

e e B )]

2 e /n S }:1 2 s
‘\/(1 - ”’ = 5 /J“ Os s+ o) [:u‘{‘ . + O?Lz Pn»—Z + Pn + C,: Pn+2 . '}
{ + n 1 “P + 'I_{;zj—l }]
Y. . . Cf, n—1 ,,_(,1 .
s i(AL + s¢) Cfl—? P n+z PS
;(X C:L . + O ,‘]n—z —2 + Gu I, + Cs Guyz 140 [

and we shall obtain expressions for the height of the surface-waves and the velocity-
components.

I have not thought it worth while to compute any of these series in detail, as the
general character of them may be inferred from the series computed in Part I. for
the special case where s = 0. For large values of #n, and even for comparatively
small values of n when /g/40°?® is large, the quantities C will rapidly diminish as
we pass away in either direction from C;. Hence the most important term in the
series for { will be that involving Pi, and this term will in general sufliciently
predominate to decide the number and approximate position of the nodal parallels of
latitude.

If we neglect C;_, in comparlson with Ci,, and suppose that o is small in com-
parison with A, the formula (49) gives

r(r+s+1)C, = (r+1)(2r+3)D;

and therefore D: will be of the same order of magnitude as Cj,,. Hence, when r is
less than n, D] will be of the same order of magnitude of C;,,, and similarly it may
be seen that when r is greater than n, D: will be of the same order of magnitude as
C;_.. Thus the predominant terms in the expressions for the velocity-components
will be those involving C;, Di_,, D, ..

The exponential factors indicate that the type of motion involved will consist of
waves propagated round the sphere with uniform angular velocity M\/s about the
polar axis, and that there will be s crests or troughs on each parallel. Positive
values of N will correspond with waves propagated in the opposite direction to the
rotation, that is westwards, while negative values will correspond with easterly
waves. The paths of the fluid particles will be ellipses with their axes directed
along the meridians and parallels.

§ 11. Oscillations of the Second Class.

In dealing with the oscillations of the second class we proceed in the same manner
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as before, retaining D; as the arbitrary constant of integration when the type
under consideration is that whose period is approximately given by the formula

n(n 4+ 1) — 20s/\ = 0.

For we may anticipate that this quantity will predominate over the others, at least
when the depth is sufficiently large or the angular velocity of rotation sufficiently
small. The ratios of the remaining constants to D} may then be computed from
the formule (67), and on substituting these ratios in the equations

. 7 C;l_ g n S n 8
€= szet(M“H‘b)[' . + Ds,g Pn—-3 I fja] =1 + —“:H P7+l + ]): Pn+3 . ~]
L n
\/(1 —_— ”2) U — DS AL+ 3) [#{' . + n—l Pn—1 Jﬂ"'l Pn+l }

-{...+ I;7;3'1138_2+198+ et

\/(1 —_ MQ)V J— 22% Ds (AL sb) [:,U,{. . + (’n—l Pf;..l n+1 Pn+l . .}
— .{ + D P, + P+ ’“2 P,Hg : H
5 Ds eitht+s9) + 92,4 gt __n+1 +
a\ n LI I):y ﬂ— n-l )g gIH-l H 1

we obtain expressions for the height of the surface-waves and the velocity-com-
ponents. The values of A for the oscillations of this class being always positive, the
direction of the wave-propagation will always be westwards.

By way of numerical illustration 1 have computed the series for { corresponding to
the case n =3, s =1, and to the values 4, 3%, 1%, L for hg/dw¢®. In these four
cases the series within the square brackets are found to be

— 2°977P; — 0°1880P] + 0-8753P% — 00916 PL + 0°01153P}, '
— 0°00093 P}, 4 0000052 P}, — 0000002 P}; + .
— 14735P; — 0'3260P}; + 0°11690P} — 0:01309P} + 0:00080 P},
— 0°000032P}, 4 0°000001 P},
-0 7296P2 — 0'2248P; 4 0°03159P§ — 000168 P} + 0:000051 P},
— 0000001 P}, +. .
— 03617P; — 0°1277P} =+ 0°00814P; — 0°00021 P; + *000003P}, — . ..

It will be seen that as the depth increases or w diminishes the coefficients all
become smaller, while the convergence of the series improves. It may be inferred as
in the last section that Ci/D;,, will tend towards the limit zero when 7 is less than
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n, while C;,,/Di will tend towards a finite limit. In like manner when « is greater
than n, Ci/D;_; will tend towards zero while C;_,/D; will tend to a finite limit.

Let us examine the limiting forms assumed by ¢, U, V, when the rotation is
annulled. On putting n (n 4+ 1) — 2ws/A = 0 the relations (51) give

L/ oM} = — r¥(r + 1)° Zg’; ,

Ni=r(r+1)—nn+1)=(r—n)(r+n-+ 1)
Thus from (52) we obtain, if r < =,

G 4 (r+s+1) L’%l (Ja—fn)(ﬂr+n+1)(2'r+

Lt

@Dl T gk (r 1P @43 T DL 7+ s+ 1) ’

and if » > n,

G 4P (r—5) Lt _(r=n)(r+a+1)2r—1)

’ = =
@®Di_ T gk (2r —1)° D‘ (r 4+ 1% (r — s)

Hence if we retain only the most significant terms and put oD}, = A%, we find

: 40*  (n +s) a® (n—s4 1)
I 8 i A+ 56) \nTs) s -
{=—one [hgn_l n* (2n+1) Pt hgn+1 (n+ 12 2n+1) Pl
isa
— 2 - s z()\t+s¢>) 8
V(1 —p)U ’ﬂ(%—l-l)/bA P;

\,/(1 _ ”2)V _ 2/“ pAe i) Ps

n A1) v | 4P nt s 402 (n—s+1) ]
T A o 2n + 1) ”"‘+ ho(n+1)2@2n 4 1) "

If therefore we suppose that o reduces to zero while A} remains finite, { will
reduce to zero, but the velocity-components will tend to finite limits given by

2isa )

—— —_— s Ps ish

‘/(1. H')U n(n +1)hA'le(N)@ )
20 n—3s 4+ 1 (n + $) .

— 2 —_— e —— A8 s N T H isp

§/(I W)V = I A [(n + 1) (2n + 1) Pon — n(2n + 1) "'l] ¢
24 s 2 d_PifL ish
n(n—i—l)]A”(l K g

in virtue of (7).

Hence the steady motions to which the oscillations of the second class reduce
when the rotation is annulled involve no deformation of the free surface. This of
course may readily be verified by a direct method. For if u, v, w denote the
velocity-compenents referred to fixed rectangular axes, it may be seen that all the
conditions of the problem will be satisfied by
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XX 0 o _ ,
U == Jé~~za_’/, v._z%—e—mé;, w—-iba./—yao

where y 1s an arbitrary function of x, ¥, z independent of #. 'These solutions make
ux + vy 4+ wz = 0, and therefore involve no deformation of the surface. If we refer
them to polar co-ordinates, they are equivalent to

1ax QX

A A

SOCIETY

OF

A

SOCIETY

OF

= nbosg o9 V=0
or ]
X 2 % 0
VI =p)U=55 V=)V == (1—p)5
This solution becomes identical with that found above if
2a Pa wcb
X= = s i ME )e

For the special case s = 0, the values of N\ corresponding with the roots of the
second class will be zero, and the corresponding types of motion steady, even when
is finite. The types of steady motion will however involve a deformation of the
free surface in all cases where the angular velocity of rotation is different from zero.
These cases have been fully discussed in Part L., § 14.

§ 12. Forced Oscillations. General Analytical Solution.

The problem of the forced oscillations involves the determination of the quantities
C., in terms of vy, from the equation (31) or (40). Dealing first with the case of
uniform depth, and supposing that the disturbing potential involves only a single
term v, P;, (1) ¢***¥, we have to solve the simultaneous equations

— LG + 4Cle = 0,
#;C; — LGl + ?j§+20§+4 =0,
a (‘,L_o — L 0;‘; + 3G = hyn/élwzcﬁ
with the condition that L/ C: = 0.
From these we deduce, as in § 5, that
O"C';Z = H-——g'“2(r < n- 1),
% = MK;:'Q(T > n 1)
VOL. OXCL-—A z
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Thus the equation which involves y; becomes

Cfb (Hi-z - L:L "{“ K?H»Z) == ’lb)’f,,/‘iw?ag;

whence
= _ mjde’e®
" HZ—-Z - L;s;, + ]{1854-‘3
We may now deduce C;_,, Ciy, . .. Oy, Copy, o .. by means of the formule

| 1 ~ . TTs
(/fzj?f — Hftmz (Jfb—& H?zm2H:L~4 &/C
3 "y

= H —
Of; fo—2 C:L 5‘3'%»2932';—«4
Al ™
(«’:Hz . waz (wa; . wa-szz»;-4- &
e =TT s = H ]
C/sz ]/;L Ci J/i ?/ :1( 2

and therefore

ALEsh) P s
— N . . N 7_4
do®e® Hj_, — L + Kj Ty Wiy '
Hos b Pr o e KsaKore p
+ 8 Ta2 + [ + )8 w2 8 [T + s
-2 - Z/w, ?/n ?/n+2 -

It should be noticed that the term involving Pj need not here be the predomi-
nating term of the series within the square brackets; it will however be so when
the value of N for the disturbing force is in the neighbourhood of those roots of
the period-equation which approximate to roots of L = 0. But if A have as its
value another root of the period-equation, say, for example, one which approxi-
mates to a root of Lf = 0, the series within square brackets will differ only by a
constant multiplier from the series in the expression for the tide-height for the
corresponding type of free oscillation, since the equations which determine the ratios
of the C’s are evidently the same in both cases. Hence, for values of A in the neigh-
bourhood of this one, the predominating term will be that which involves P,
Consequently, when 7 and m differ widely, the numerical computation of these
series will become laborious; for as we proceed away from the term containing
P: towards that involving Pi, the terms will at first increase in magnitude, and
the convergence of the series will not assert itself until the term depending on
P:, has been passed. These circumstances will not however occur in any of the
cases of more practical interest. '

Whatever be the nature of the disturbing potential it will be possible to expand
its surface-value in a series of surface-harmonics. Thus the most general value
of v which can occur may be expressed in the form

8L P=®

5,3 3 [yze“"‘ﬂw + Sefﬂ P; (k).

§=0 a=s

The deformation of the surface due to each term may be calculated independently
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and the results superposed, so that the deformation at time t resulting from this dis-
tmbmg force will be given by

© z(\t—l—sqb) < =~ i(At+5) Ts s
§=o0 A= fyn M—t-'s I ]I'.[n 9 | I{n +2 R }
c 4 90’/2 2)‘ 320 1’23 [ }I:z—"‘.l sz + I<n+‘1 { ) Q”?z..o n- P 7,/1) s e ’

The corresponding formulse when the depth is variable may be obtained by replacing
by i, 8, Hi, Ko, L, @, o, by & G5, AL 8, 33, I, €, ») respectively, where
Kk, G2, 3L, &, 7, are defined by the equations (85), (41), (42), and

ol S
= Em B

s s —
qLaz - -9 e
E f.? ]
ms — 41*2"711-27‘ n
" s — s P
an n--2

while A} is obtained by writing &; in place of 9} in the right-hand member of (42).

§ 13, Classification of Tudes.

In the last section we have reduced the problem of the evaluation of the forced
tides due to any disturbing force to that of the development of the disturbing poten-
tial as a series of surface-harmonics. This development for the case of the disturbance
of the ocean due to the attraction of the sun and moon has been already dealt with,
and reference may be made to Professor DaArRWIN's article in the ¢Encyclopadia
Britannica’ for a full account of it. We give here a short summary of the principal
results of which we propose to make use.

The principal part of the disturbing potential will consist of spherical harmomc
functions of the second order, and when expressed by means of zonal and tesseral
harmonics the terms which occur will be of three types, characterized by the rank of
the harmonic involved.

For the first type s = 0, and the corresponding tides will be expressible as series of
zonal harmonics. For these types the value of N will be small in comparison with
that of w, so that the period of the disturbance is long compared with a sidereal day.
The terms will cease to be oscillatory when the orbital motion of the disturbing body
is neglected. The tides generated by these parts of the disturbing potential have
been already dealt with in Part I.

The terms of the second type are those for which s = 1; in certain of these terms
the value of A will be equal to w, so that the period is rigorously equal to a sidereal
day, while in the rest the period will reduce to a sidereal day when the orbital motion
of the disturbing body is neglected. If n denote the mean orbital motion of the
luminary, the ““speeds” of the principal diurnal tides will be w and w — 2n. We
propose to neglect the sun’s orbital motion, so that for each of the principal solar

Z 2
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172 MR. S. S. HOUGH ON THE APPLICATION OF HARMONIC

diurnal constituents we shall suppose that X = w rigorously. The same analysis will
then apply to one of the lunar diurnal constituents, while in order to illustrate the
effect of the departure of the period from exact coincidence with a sidereal day we
shall evaluate independently the lunar diurnal constituent for which

M= o — 2n) = 092700 o.

The principal part of the tidal oscillations will be due to the third part of the
disturbing potential, which involves harmonics of rank 2. The period for the tides
due to these terms will differ but slightly from half a sidereal day, and will reduce to
half a day exactly when the orbital motion of the disturbing body is neglected. We
shall therefore assume that A = 2w rigorously for the solar semi-diurnal tides, while
we shall take the value

N2w =1 — nj/w = 096350

as typical of the lunar semi-diurnal constituents. The analysis applied to the solar
constituents will be rigorously applicable to the sidereal iuni-solar semi-diurnal tide
usually denoted by the symbol K,.

§ 14. Special Cases.

Instead of making use of the equation (31) as we have done in § 12, we may of
course compute the forced tides by means of the equations (49), (50) of §6,
determining incidentally the constants Di. Thus, if we suppose that all the y’s
are zero except yi,,, we have the following equations for the determination of D,

st Dipo, &e.

. (2 + 1)
— NiD; + "h“oe+1—0
(s + 2.1 (s + 1)2(25 + 2 .
”(‘f%-jr*)r D; — M;,. Gy 9Z_f_ g )Dwz = (s 4+ 1)* (s + 2) ry;a,2
s+ 3)%.2 s s+ 2)2(2s + 3)
(m)hé*— H—I Na+2D +2+( 2?95—7 - 03%3"‘“

where the terms on the right are all zero, except in the second equation. Now it is
evident that if N¢= 0, or '

all these equations will be satisfied if

Di=(s4+1)y(2s+ 1)]”7?“

40?a®

and
C:H = Di-l—? = C:+3 =.,.,.=0
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It follows that if the disturbing potential be of order s 4 1 and rank s, and the
period be % (s + 1) days, the tide will involve no rise and fall at the free surface, but
will consist merely of horizontal currents. If we put s = 1 the requisite period will
be rigorously equal to a sidereal day, and the circumstances will correspond with those
we have assumed to characterize the solar diurnal tides. We therefore conclude
that in an ocean of uniform depth the solar diurnal tides will involve no rise and fall.
We shall however see hereafter that for certain of the lunar diurnal tides the
difference between the period and a sidereal day may be sufficiently great to render
the rise and fall of considerable importance, unless the depth is very small.

We have seen in § 4 that the formulae applicable to the case of variable depth may
be deduced from those applicable to the case of uniform depth by replacing & by «

/ ] 2ws
and C;, by C; + e [n (n 4 1)+ T] Ie.

But if ¥, =0, T}, = — ¢,C;, and therefore when N = 2w/(s + 1) and all the ys
ave zero except i1, Cis Cis &e., will all be zero, while

s o {5 (o 2) 8 o 1) Ty =0

whence we obtain
$
2(s + 1)

s 40%a?

41— T 7
1T—2(s + 1) Jrt.
' 4o*a?

Thus the forced tide will be similar in type to the disturbing potential which

produces it, though it will be inverted unless I < 0 or > 2w
(s +1)°gn

This theorem will admit of application to the solar diurnal tides on putting s = 1,
in which case it reduces to a thecrem given by Laprace.* The critical value of /,
for a system comparable with the earth, is considerably greater than such depths as
occur on the earth; hence, for depths comparable with that of the ocean, the diurnal
tides will be inverted when the ocean is deeper at the equator than at the poles :
they will however be direct when [ is negative, so that the ocean is deeper at the
poles than at the equator.

It is evident that the equations typified by (31) will all be satisfied with the Cs
all zero if h = 0, since in this case the right-hand members will reduce to zero. In
like manner the corresponding equations which apply to an ocean of variable depth
will all be satisfied when « = 0, if for all values of n '

! 2
Gt {n+ D+ S =0

* Laus, ¢ Hydrodynamies,” § 212,
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This equation leads to

Iy 2ws
ZJ:(:)—;CLQ{” (vt D)+ }

ST
(/:, proesng U, S -

1 7 {77, (n+ 1) + {E}

4’a?

There exists then a certain law of depth, depending on the period, for which the
tide will always be similar in type to the disturbing potential which produces it.
This law of depth is expressed by the formula

If we suppose that N = 2w rigorously, it reduces to
h=1(1—p?,

so that the depth will be a maximum at the equator, and will gradually decrease on
passing away from the equator to zero at the poles.*

For other values of A the formula for /i will make the depth negative at some parts
of the surface unless / is positive and N > 2w. The latter condition does not occur
with any of the leading tidal constituents,’ but it would hold good in the case of the
semi-diurnal tides due to a satellite whose motion in its orbit was retrograde. If
however we neglect the mutual attraction of the waters, the theorem under dis-
cussion may be supposed to apply to an ocean covering that part of the surface over
which / is positive, the remaining parts of the surface being supposed to consist of
continents. When 7 is positive, these continents must, for the lunar semi-diurnal
tides, reduce to small circumpolar islands, while for the same tides when / is nega-
tive they will cover the whole globe with the exception of two small seas surrounding
the poles.

For the diurnal-tides, the shores must coincide with parallels of latitude approxi-
mately 30° north and south of the equator, while for the tides of long period the
appropriate forms of sea will be bounded by two parallels nearly coincident with the
equator. A change in the sign of 7 in all cases involves an interchange between the
seas and the land. '

It should be noticed that the formule (12) make U, V infinite at the points where

o= -g—;—, that is, at the shores. This indicates that the neglect of the squares of

the velocities is not allowable in the neighbourhood of the coasts no matter how small
the amplitude of vibration may be, and seems to point to the existence of * breakers”
as an essential accompaniment of the tides.

* (f. Liaws, ¢ Hydrodynamics,” § 213.

+ There will be small tidal constituents depending on higher powers of the moon’s parallax for

which M exceeds 2w. (f. Darwix, “ Harmonic Analysis of Tidal Observations.” ¢Brit. Assoc. Report,’
1883 (Southport), § 3.
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§ 15. Solar Semi-diurnal Tides.

In the last section we have considered some special cases in which the tide-height
is expressible by a single term. In general it will however only be expressible by a
series of terms. It may be shown, as in § 5 of Part I., that this series will be finite
when the law of depth is such that

) I 2ws %
1 — e {n (n -+ 1)+ _;;} = 0,

where n is an integer, n — s being even or odd according as we are dealing with the
symmetrical or asymmetrical types of rank s. The values of I determined from this
equation will in general involve A, but for large values of n, they will approximate to
the same values of / as those required for the expression in finite terms of the long-
period tides, since for such values 2ws/\ will be small compared with = (1 4+ 1).

In other cases the expression for the tide-height will involve infinite series. We
deal in the present section with the case where [ is zero, so that the depth is uniform.

The numerical computation of the semi-diurnal tides admits of special simplicity
when N = 20 exactly. Putting A = 2w, s = 2, in the formule (30), (29) we obtain

2 = w—1 . n + 4
" @y D@+’ T A @+ 3) @t 5y
AZ = (n—1)(n 4+ 2) _ (n—12(n + 2) _ (n+ 2 (n—1)
T w2 (n 4 1)° (n+1)2n—1)2n+1) a2@+1)P20Cn+1)2n+ 3)°

the last of which gives on reduction
s 2(n—1) (n+2)
T a4+ 1) (20 —1)(2n + 3)

This general formula for A2 fails to hold when n = 2; for, in this case, n — s and
n(n — 1) — 2ws/\ are both zero, and therefore the second fraction involved in the
expression for A% is indeterminate. To determine its limiting form we must first
suppose the period slightly different from half a day, so that X is not rigorously equal
to 2w ; the formula (29) then gives

A 2.3 — do/\ 42.1.5
do? 2.3 3.5.7{3.4— 4o/r}’

9
A; =

which, on putting A = 2w, reduces to

4 1.4? 3

2 - —
A2_22.39 32,7.10 5.7

The formulse for «?%, 42, A% are now in a convenient form for logarithmic computa-
tion, and we may readily deduce the following numerical values

% (f. Laprace, * Méc. Cél.,” Part 1., Book TV, § 7.
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176 MR. § S. HOUGH ON THE APPLICATION OF HARMONIC
Al = 0:085714 A% == 0°004494
A? = 0°0233766 A% = 0°003179
AZ = 0°011544 A2, = 0002367
AZ == 0°006828 AZ = 0001830
log a% = 375696 log % = 3:1564
log o} = '3"'6’3639 log 2%, = 3°0360
log a§ = 3:451469 log %, = 4'9297

log 2% = 329451

log o3 = 2°67778 log 4% = 33865
log y4 214569 log 43, = 3'2312
log yi = 381531 log y%, = 8:0993

log y3 = 357512

Taking hg/4e’a® = 4%, and p/oy = 0°18093, the formula (32) leads to

= 4 0°063428 L = — 0019860
L4 = — 00001156 L2 = — 0:02128
P — 0012412 12, = — 002216
L= — 0017379 3= — 00228

Thus if we neglect K3;, and make use of the formula

s n—’yn—-"
M=%k
we obtain in succession
log K% = n 5671 log K2 = n3:03947
log K3, = 1 59226 log K% = 7 872885
log K3, = 1 4'2165 log K¢ = 271588

log Ky = n 45753

and therefore, since (7 ,,/C, = K&, ,/y, we find
log (C3/C3) = 0°03810 log (C%,/C%) = 1.2:8300
log (C¥/C3) = n1'58266 log (C3,/C%) = n2:6914
log (CY/CY) = n 122417 log (C%,/C%) = n 2:572

log (C2%/(%) = n1:0002


http://rsta.royalsocietypublishing.org/

%

a
A
1~
A B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ANALYSIS TO THE DYNAMICAL THEORY OF THE TIDES. 177

But if @5 P (u) ™+ denote the height of the ethblmm tlde resulting from
a disturbing potential y: P; (u) 6", we have

777 = g n@fu
Therefore
leys/4e*a® lygo/4w®a? o

C L" K?’_ L —K:

Wi

and on introducing the numerical values for &, g,, L3, K} we obtain

Thus we have :

log (C3/€@3) = n0'32760 log (CL,/@%) = 7 4:9646
log (CY/@3) = 191025 log (C1,/@3) = 56560
log (Cy/@3) = n 113442 log (C3/@%) = 76228 ;
log (C%/@%) = 2°1346

and therefore if we suppose the exponential or trigonometrical factor to be involved
in @7, so that the height of the equilibrium tide is expressed by @3P; (u), the height
of the corresponding dynamical tide is given by

{ = @:[— 1'9476 P} — 2:12617 P? + 0'81331 P2 — 0-13628 P
+ 0°01363 P% — 0000922 P}, + 0:000045 P%, — 0:000002 P, + . . .].

For points lying on the equator we have pu = 0, and it may be shown that in this
case

whence we deduce
log Pi= 047712 log P}, = 1'4325
log P} = 1 087506 log P}, = n 15464
log P{ = 1-11810 log P}, = 1643
log P§ == n 129419 log Pfy = » 1'73.

Thus the values of the successive terms of the series within the square hrackets
for points at the equator are

— 5'8428 4 15'9463 - 10°6746 4 2:6829 + 0°3690 -+ 0°0324 4 00020 - 00001,

which, on addition, give 23'8645. But the height of the corresponding equilibrium-
VOL. CXCL~—A., 2 A
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178 MR. 8. 8. HOUGH ON THE APPLICATION OF HARMONIC

tide at the equator is 8€0;, and therefore the ratio of the height of the tide to that
of the corresponding equilibrium tide at the equator is

+ 7°9548.

In like manner the tide-height in any other latitude may be compared with the
equilibrium tide-height, but the process will be laborious in the absence of tables of
the functions P2.*

The above example has been treated in some detail as illustrative of the method to
be employed for the computation of the forced tides by infinite series ; the chief part
of the labour is involved in the determination of the quantities xj, i3, A}, but when
once these have been determined, since they do not involve the depth, it is easy
without much additional labour to multiply cases for different depths. Besides the
case already considered, which corresponds to a depth of about 7260 feet, T have
computed the series for depths of 14,520, 29,040, and 58,080 feet, corresponding
with the values 5%, 1%, and ¢ for hg/40’a®.  For these depths the series within the
square brackets is replaced by ‘

— 083227 P2 4 021694 P; — 0°02615P5 4+ 0'00180P; — 0000080 P%,
4+ 0°000003 P% + . . .,
— 191°925P% 4 15696 P2 — 0°8082 P2 - 00256 P2 — 0:0005 P2 4 . ..
and
C1°9610P% — 0:06823 P2 4 0:00164 P2 — 0-000025P2 4 . ..

respectively, giving for the ratio of the tide-height to the equilibrium tide-height at

the equator the values . _
— 15016, — 23487, 4+ 2°1389.

When the depth of the ocean is greater than 58,080 feet the tides are therefore
direct at the equator. They gradually increase in magnitude as the depth decreases,
and become infinite and change sign for some critical value of the depth rather in
excess of 29,040 feet after which, for further decrease of the depth, they remain inverted
until a second critical value is reached which is somewhat greater than 7260 fect,
when a second change of sign occurs. The very large coeflicients which appear when

diurnal type whose period differs but slightly from half-a-day. On reference to the
tables of § 9 it will be seen that we have, in fact, evaluated this period as 12 hours
1 minute, while for the case hg/4w*a® = % we have found a period of 12 hours
5 minutes. We see then that though, when the period of the forced oscillation differs
from that of one of the types of free oscillation by as little as one minute, the forced
tide may be nearly 250 times as great as the corresponding equilibrium tide, a

* The zonal harmonics from P, up to P, have been tabulated by Graisuew, ‘ Brit. Assoc. Reports,’

1879, but I do not know of the existence of any Tables of the Tesseral Harmonics, with the exception
of a few given by Tuousox and Tarr, ‘ Nat. Phil., vol. 2, § 784.
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difference of 5 minutes between these periods will be sufficient to reduce the tide to
less than ten times the corresponding equilibrium tide. It seems then that the tides
will not tend to become excessively large unless there is very close agreement with
the period of one of the free oscillations. '

The critical depths for which the forced tides here treated of become infinite are
those for which a period of free oscillation coincides exactly with 12 hours. They
may be ascertained by putting A = 2w in the period-equation for the free oscillations
and treating this equation as an equation for the determination of 2. The roots may
be found by trial and error as in § 9, the approximate values with which to commence
the trials being suggested by the discussion already given. The two largest roots are
found to be given by

hg/4e*a® = 010049, hg/4e’a® = 0°02545,

and the corresponding critical depths are about 29,182 feet and 7375 feet.

We have hitherto supposed that p/o, = 018093, but for purposes of comparison I
have also examined the case where p/o, = 0, that is where the mutual attraction of
the waters is neglected. The series for { in this case become

{ = @3[1:0927 P 4 191817 P2 — 066909 P2 + 0-10701 P2 — 0:01036P%,
+ 0°000683 P3, — 0°000033P3, + 0:000001P% — . . .]

{= @[~ 10733P% + 0:24502P% — 002790P; 4 0:00185 P — 0:000080P%,
+0:000002P3, — . . .]

{ = @3[9°34370P% — 070311 P% 4 0:03449P% — 0:00106 P + 0:000022P% — . . .]
{= @3[17739P% — 0-05750P% + 0-00132P% — 0:00020P2 4. . .] '

or the depths 7260, 14,520, 29,040, 58,080 feet respectively. From these series we
deduce as the ratio of the tide to the equilibrium tide at the equator the four values

— 7+4843,  — 1'8208, -+ 11'2595, -+ 19236,

results which agree, except in the third case, with the numbers given by Professor
Laup* deduced from the numerical formule of Laprace.

It will be seen that in three cases out of the four here considered the effect of the
mutual gravitation of the waters is to increase the ratio of the tide to the equilibrium
tide. In two of the cases the sign is also reversed. This of course results from
the fact that, whereas when p/o; = 018093 one of the periods of free oscillation is

* By a careful re-computation of the semi-diurnal tide for the case =10 (notation of Professor Lans)
I find the following series more accurate than that given for {/H"' :—

v? + 6:19150% + 324478 4 0:72348 4 0:0919,10 4 0-0076»12 + 0:0004 14 4 .
This series reduces to 11'2595 when » = 1, thus agreeing with the result obtained above.
2 A 2
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180 MR. 8. S, HOUGH ON THE APPLICATION OF HARMONIC

rather greater than 12 hours, when p/o, = 0 the corresponding period will be less
than 12 hours

§ 16, Lunar Semi-divinal Tides.

A similar method to that of the last section may be used to evaluate the lunar
semi-diurnal tides for which we take \/2w = 0°96350. The arithmetical work is,
however, more severe, in consequence of the fact that the quantities «f, %, Aj must
be evaluated from the formule (29), (30) which do not assume the simple forms
obtained in the last section. Substituting in these formule the value of \/20
quoted above we deduce

A% = 0075603 A% = 0:003845
A2 = 0019864 \2, = 0002750
AZ = 0°009856 A% == 0:002028
A2 = 0005834 A% = 0001968 ;
log a3 = 376026 log @, = 3°156
log a} = 3'63756 log @}, = 30862
log o = 345530 log a3, = 4'9299 ;
log 2% = 3:29488
log ¢ = 268108 log 4y = 33867
log %3 = 214687 log 4% = 82313
log 42 = 3'81592 log 4% = 3°0994.

log %3 = 3:57549

Our procedure is now exactly similar to that of the last section. Thus, if the

height of the equilibrium tide be
@ P (1),

we find, when hg/40%? = 4% and p/o, = 018093,

{= @3[0'10395 P + 0'57998 P; — 0°19273 P§ + 0°03054 P
— 0002960 P3, 4 0:000196 P}, — 0°000010 P%, + . . .].

Similarly, when hg/4ea® = Y,
{= @i[— 10647 P 4 024038 P — 0:02774 P 4 0-001867 I3
— 0:000082 P% + 0000008 P3, — . . .]:
when hg/4e*a® = 1Y,

{ = @3[91181 P — 071533 P§ 4 003621 I’§
— 0001136 P + 0000024 P53, — . . .];
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and when hg/40’a® = ,
{ = @L[17646 P} — 0°06057 P2 4 0001447 P2 — 0000022 P + . . .].

From these series we find for the ratio of the tide-heights to the equilibrium tide-
heights at the equator the four values

— 24187, — 1'8000, - 110725, - 1-9225,

On comparison of these numbers with those obtained for the solar tides in the
preceding section, we see that for a depth of 7260 feet the solar tides will be direct
while the lunar tides will be inverted, the opposite being the case when the depth is
29,040 feet. This is, of course, due to the fact that in each of these cases there is a
period of free oscillation intermediate between twelve solar (or, more strictly, sidereal )
hours and twelve lunar hours. The critical depths for which the lunar tides become
infinite are found to be 26,044 feet and 6448 feet.

Consequently this phenomenon will occur if the depth of the ocean be between
29,182 feet and 26,044 feet, or between 7375 feet and 6448 feet. An important
consequence would be that for depths lying between these limits the usual pheno-
mena of spring and neap tides would be reversed, the higher tides occurring when
the moon is in quadrature, and the lower at new and full moon.*

There appears then to be a considerable range of depth comparable with the mean
depth of the ocean over which the reversal of the spring and neap tide phenomena
would take place, but in that the actual tides are highest in the neighbourhood of
new and full moon we conclude that the effective depth of the ocean does not lie
within this range, and that none of the periods of free oscillation of the actual ocean
lie between twelve solar hours and twelve lunar hours. The true effective depth is
almost certainly less than 26,044 feet, and therefore both solar and lunar tides will
be in the main inverted, though the configuration of the land and of the ocean bed
will probably give rise to considerable variations of phase in different places.

The shortest period of free oscillation of the second class for the case s=2 approxi-
mates to, but is in excess of, three days. DBut if » denotes the moon’s mean orbital
motion, the speed of the lunar semi-diurnal tide is

2 (0 — n).

If we equate this to 4 w, we obtain

n =

[O8

Sot

Hence, if the moon’s orbital motion were accelerated, or the earth’s rotation
retarded, until the month and day were in a ratio less than 6: 5, it would be possible
for the period of the lunar semi-diurnal tide to confound itself with one of the periods
of the oscillations of the second class, and the tides would then tend to become very
large.

* (f. Kurviy, ¢ Popular Lectures,” vol. 2, p. 22 (footnote).
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17. Solar Semq- d@mnal Tides in an Ocean of Variable Depth.

To evaluate the tides when the depth is a function of the latitude we must make
use of the formule of § 4. The method will be sufficiently illustrated by the
computation of the solar semi-diurnal tide for the case where

hg/de®a® = 5% + 5% sin®f,
or, where
h = (14,520 -+ 9680 sin®f) feet,
0 denoting the co-latitude.

Putting lg/4o’0® = -, and making use of the numerical values found in § 15 for

a, y%, A, we obtain from (41)

log &= 363907 log &2 = 7 3'06261
log & = 312901 log & = n 34369
log ni=2:17040 log 7% = n 3'95767
log i = n 375361 ‘ log 2 = n 3:9962

: K 1 we obtal

while, when Tutg = 205 We obtain

#: = 4+ 0020765 #: = — 005787
1= — 0039717 2= — 00606
12 = — 0°052592.

From these we deduce in succession, on neglecting 3R7,,
log W3 = n 4651 log 3: = 4'1632
log 32 = n 42612 log 32 = 320891

and B
log 3% = 8°49214.

But the first two of equations (40) give

- JB202 22 . | _ZA% o K Zf/‘.!_ N 2
%20’3"!_772 i+ [40,2“2—‘_ 84w2ae:‘ Y2 == [ 2,2 ";84 0 A 25

9 9 9 l > 9 o lo
&0 — (I —-WHCi= — 8 ~—?’a 7l = — 8k ”~ . €,

which, on solution, yield

2 l‘? 7 % f)lﬂ g :‘:.
¢ =— ["”2+ > :]%@m+8wr~%a—%’"% T T

4ew’a? ? — K2 *4o’a® B P ] - 1S
— Ky Z((/Q 2 R ) ®2 g ¢ .
Ci= - [Zwaaé‘* 8 fote? A‘a] g A T T O - e - T
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- On substituting the numerical values for the quantities on the right, we obtain
G = — 29242 @, Ji = 028546 0%

The remaining constants may now be computed from the formulee C¥/C; = Ri/x;,
C3/Cs = Mi/mi &e., and we finally obtain

{ = @[ — 2'9242P; 4 0'28546P; — 0°00733P; — 0°000147P2 — 0:000007P% — ., ..].

This makes the ratio of the height of the tide to that of the equilibrium tide at
the equator
- 3'6690.

The tide will evidently be in the main inverted, the longest period of free oscilla-
tion of the first class being in excess of twelve hours.

As a further example, I have computed the series for £ when the depth is given
by the formula

/Ly~ 1
4ot T 1

that is, when the depth is 29,040 feet at the poles and shallows to 19,360 fect at the
equator. This series is found to be

{= @3] — 2'3661P; + 0'35649P% — 0:03953P% 4 0:00376P:
— 0°000333P%, 4 0°000029P3, — 0-000002P%, + . . . .],

making the ratio of the tide to the equilibrium tide at the equator
— 3°4583.

l
40)‘5(;;3 = 3, and replace A by 20 in the period-equation, regarding tlns

as an equation for «, the largest root is found to be
k = 21,765.

Thus there will be a period of free oscillation coinciding exactly with twelve hours
when
h= (21,765 4 9680 sin*6) feet ;

this formula makes the polar depth 21, 765 feet, the equatorial depth 31,445 feet, and
the mean depth 28,222 feet.

lq
In like manner, when T ‘f -
W t?

= — 4, there will also be a period of free oscillation
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agreeing cxactly with twelve hours, when the polar depth 1s 36,970 feet, the
equatorial depth 26,290 tect, and the mean depth 29,517 feet.

§ 18. Dournal Tides.

It has been shown in § 14 that the diurnal tidal constituents whose periods arvce
equal to a sidereal day will involve no rise and fall at the free surface when the
depth of the ocean is uniform. This theorem will be rigorously applicable to the
luni-solar diurnal constituent usually designated by the initial K, while it may also
be supposed to apply with a fair degree of accuracy to each of the solar diurnal
constituents since the motion of the sun in his orbit is sufficiently slow, There will
however be an important lunar diurnal constituent for which the speed is 0°92700w,
in dealing with which we propose to take into account the difference between the
period and a sidereal day. The method of computation is exactly similar to that
used for the lunar semi-diurnal tides, and thus we find when hg/4w*c® = 4,

[ = @[~ 007638} + 003543 P} — 000845} + 0001207 P}
— 0000114 P}, 4 0°000008P;, — . ..7;
when hg/do’a? = 4,

{ = @[~ 01691 P} + 0°04738P} — 0-00628 P -+ 0:000480 D}
— 0000024 P}, 4 0000001 P}, —...7;
wheu Ay/do*a® = %,

{==@,[— 04145P; 4 006576 P} ~ 000464 P§ -+ 0:000184 P} — 0:000005P}, 4 ...];
and when hg/40'e® = £,
{ = @[~ 14428} 4 0'1231 P} — 0°00449 P} + 0-00009 P} — 0°000001 P}, + . ...

It appears, then, that these tides will increase with the depth, and that they will
be in the main inverted.  For small depths the rise and fall will be small, but with
a depth as great as 58,080 feet the tide will be in excess of the equilibrium-tide.
The type will tend to approximate more and more closely to that represented by
a second order harmonic alone as the depth increases.

So long as the depth is uniform the tidal constituents whose periods are rigorously
equal to o sidereal day will never tend to become infinite, and consequently no
period of free oscillation of the type of the diurnal tides can coincide exactly with
one day. As o diminishes however the shortest period of the second class, which for
the depths under consideration is longer than the period of the lunar diurnal
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constituents, approximates to one day, and attains this as a limiting value when
o = 0. Hence, as o diminishes, or & increases, the largest root of the second class
must pass through the value 0°92700, thus rendering one of the lunar diurnal
constituents infinite. This accounts for the rapid increase in the coeflicients in the
series given above for these tides as A increases.

The roots of the first class must however all be greater than unlty, no matter
how great the depth may be. Since they all decrease with the depth, they must:
approach finite limiting values greater than unity as the depth diminishes to zero.

The tides of rigorously diurnal period will become infinite when the depth is
variable if [ assumes the value

Oj=

so that with this value of ! we may anticipate  that there will be a period of
free oscillation exactly a sidereal day in duration. Now the above value of 7 will
require that the surface of the solid earth should be rigorously spherical in order
that the free surface of the ocean may be an equipotential surface under gravity and
centrifugal force. It is easy to see why in this case a free oscillation of rigorously
diurnal period must exist. For if the water be set in rotation as a solid body akout
an axis not rigorously coincident with the rotation-axis of the solid earth, and the
form of the free surface be adjusted for equilibrium under centrifugal force about the
new axis of rotation, there will be no forces acting which tend to modify this state
of motion, and it will continue permanently, provided the system be free from
friction. The motion of the water will be steady in space, but it will be oscillatory
with a period of one day relatively to the solid earth.

It is easy to verify that in the forced oscillations of rigorously diurnal period the
motion of the water is of like character, involving no relative motion of the parts
and being steady in space. In this case the axis about which the rotation of the
water takes place lies in the plane containing the earth’s polar axis and the dis-
turbing body.
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